一种用于水产养殖的蚝排面积测算方法及系统与流程

本申请涉及测算技术领域,特别是涉及一种用于水产养殖的蚝排面积测算方法及系统。
背景技术:
生蚝,学名叫牡蛎,隶属软体动物门,牡蛎科。是沿海最为常见的双壳贝类,种类繁多。全球牡蛎有200多种,我国有长牡蛎,大连湾牡蛎,近江牡蛎等品种。近海养殖生蚝主要分为石块贝壳附着器养殖法、桩式养殖法、桥式养殖法、伐式养殖法、联桩养殖法等等。随着生蚝养殖基数的发展和社会环境保护意识的提高,伐式养殖法越来越普及。筏式养殖法为牡蛎立体养殖法的一种,多用延绳式,养殖的牡蛎生长快,单位面积产量高。养成的牡蛎多为贝壳采苗器采到的苗种,贝壳用绳索串联,长度依水深而定,吊挂于筏下。
我国生蚝养殖面积从2009年的112818公顷增长到2015年的141498公顷,生蚝行业产量由2009年的350.38万吨增长到2015年的457.34万吨。由于生蚝养殖规模的不断扩大,近海过度养殖、养殖环境恶化,沿海生蚝养殖面积业急待加强监测与管理,如何侦测出各个地区沿海生蚝养殖面积更是重重之重。传统的监测手段已不能满足现实的需要,而且存在着很大的局限性和风险性,这样就需要寻求新的监测手段和方法。
遥感具有探测范围广、获得资料速度快、周期短、时效性强、成本低、经济效益大等优点。利用遥感图像能快速提取所需水产养殖的面积,可帮助养殖场选址、决定养殖品种,开展养殖密度、养殖水体污染(赤潮、水质等)监测;结合gis(geographicinformationsystem或geo-informationsystem,地理信息系统)技术,还可对养殖区进行规划和管理,评估水产养殖区对环境的影响。
由于受研究时间、研究区域和数据源等客观因素的限制,还没有一种方法是最普遍和最佳的水产养殖区的识别方法。目前常用的水产养殖区识别方法主要有目视解译、基于比值指数分析的信息提取、基于邻域分析的信息提取以及基于对应分析的信息提取等。
目视解译是根据遥感图像目视解译标志和解译经验,与多种非遥感信息资料相结合,运用相关知识进行综合分析和逻辑推理,从遥感图像中获取需要的专题信息。
比值指数是在同一图像的多光谱波段内,求得每个像元在不同波段的亮度值之比,构成新的图像,以减小某些造成光照差异的因子或背景的影响,突出目标地物的辐射特征。
对应分析是在因子分析的基础上发展起来的分析方法,又称“r-q型因子分析”。
邻域分析是对波段每一个像元依据四周邻近的像元对其进行空间分析的方法,分析和运算的像元数目和位置由扫描窗口确定。
但是,生蚝养殖用地与其他水体类型具有非常相似的光谱特征,常规多光谱遥感只能提供大于100nm(纳米)光谱分辨率的间断性波谱波段信息。在生蚝养殖区识别方法中,利用目视解译、比值指数分析、对应分析的方法并不能很好地解决“异物同谱”的问题,并会在分类结果中产生“椒盐”噪声。
因此,本技术领域亟需一种新的技术,以解决上述技术问题。
技术实现要素:
基于此,有必要针对上述问题,提供一种用于水产养殖的蚝排面积测算方法和系统,本申请能够减少人工成本、提高计算精度。
一种用于水产养殖的蚝排面积测算方法,所述测算方法包括:
通过多光谱遥感的方式获取蚝排面积对应的图像数据;
对所述图像数据进行几何校正,并对发生形变的图像数据进行纠偏;
对经过校正和纠偏的图像数据进行图像增强处理,以突出与蚝排面积相关的有用信息并扩大不同地物直接的特征差别;
对经过图像增强处理的图像数据进行处理得到栅格形式的图像,并对图像进行矢量化,利用相连接的空间数据库选取蚝排面积相关的特征以测算出蚝排面积。
一种用于水产养殖的蚝排面积测算系统,所述测算系统包括处理器,所述处理器执行程序指令时:
所述处理器用于通过多光谱遥感的方式获取蚝排面积对应的图像数据;
所述处理器用于对所述图像数据进行几何校正,并对发生形变的图像数据进行纠偏;
所述处理器用于对经过校正和纠偏的图像数据进行图像增强处理,以突出与蚝排面积相关的有用信息并扩大不同地物直接的特征差别;
所述处理器用于对经过图像增强处理的图像数据进行处理得到栅格形式的图像,并对图像进行矢量化,利用相连接的空间数据库选取蚝排面积相关的特征以测算出蚝排面积。
上述用于水产养殖的蚝排面积测算方法和系统,所述测算方法通过多光谱遥感的方式获取蚝排面积对应的图像数据,对所述图像数据进行几何校正、纠偏,接着进行图像增强处理,以突出与蚝排面积相关的有用信息并扩大不同地物直接的特征差别,对处理得到栅格形式的图像进行矢量化,利用相连接的空间数据库选取蚝排面积相关的特征以测算出蚝排面积。通过此种方式,本申请对遥感图像的图像数据进行处理,可以实现自动解译和计算,减少人工成本,而且通过几何校正和纠偏能够提高计算精度。
附图说明
图1为一实施例中用于水产养殖的蚝排面积测算方法的流程图;
图2为一实施例中重采样时像素的灰度值加权内插示意图;
图3为本申请线性拉伸计算时所采用的坐标系示意图;
图4为一实施例中用于水产养殖的蚝排面积测算系统的结构框图;
图5为本申请用于水产养殖的蚝排面积测算系统的总体流程图
具体实施方式
在一个实施例中,请参阅图1,本实施例用于水产养殖的蚝排面积测算方法,包括但不限于如下步骤。
s101,通过多光谱遥感的方式获取蚝排面积对应的图像数据。
本实施例s101中,可以采用多光谱分辨率遥感,利用两个或者以上波谱通道的传感器对包括蚝排的地物进行同步成像,最终将地物反射辐射的电磁波信息分成若干波谱段进行接收和记录。
s102,对所述图像数据进行几何校正,并对发生形变的图像数据进行纠偏。
其中,本实施例s102中,所述对所述图像数据进行几何校正,可以包括:通过选取地面控制点和图像重采样的方式进行几何校正。
值得注意的是,所述通过选取地面控制点和图像重采样的方式进行几何校正,可以包括:以矢量化地形图为底图,对多光谱遥感获取的所述图像数据的遥感图像进行对比分析,并在底图和所述遥感图像上选取具有明显、清晰定位标志物作为地面控制点;根据输出图像上的各像元在输入图像中的位置,对所述遥感图像进行重新采样,建立新的遥感图像。
需要说明的是,所述根据输出图像上的各像元在输入图像中的位置,对所述遥感图像进行重新采样,建立新的遥感图像,具体可以采用三次内插法,利用三次多项式求逼近理论上最佳插值函数的方式进行处理。
具体而言,以三次多项式s(x),最佳插值函数sin(x)/x,本实施例的三次内插法,表达式包括但不限于如下:
不难看出,待求像素(x,y)的灰度值由其周围16个灰度值加权内插得到,如图2所示。
则待求像素的灰度计算式如下:
f(x,y)=f(i+u,j+v)=abc
其中:
s103,对经过校正和纠偏的图像数据进行图像增强处理,以突出与蚝排面积相关的有用信息并扩大不同地物直接的特征差别。
在s103中,需要说明的是,遥感图像的图像数据中有很多噪声存在,这些噪声不仅限制了遥感图像的辐射分辨率,影响到对不同信号强度的分辨能力,而且降低了对地面目标、结构的识别能力,因此,本实施例所述对经过校正和纠偏的图像数据进行图像增强处理,具体可以采用frost滤波器对图像数据进行降噪处理。
值得一提的是,本实施例采用的frost滤波器的冲激响应为一双边指数函数,近似为低通滤波器,其滤波器参数由图像局域方差系数决定,冲激响应的衰减快慢取决于局域方差系数的大小,与其成正比关系。frost滤波器是以权重m值为自适应调节参数的环形对称滤波器,本实施例frost滤波器的数学表达式具体包括如下:
其中,
在本实施例上述数学表达式中,g′(i,j)为平滑处理后的像元灰度值;g(i,j)为平滑窗口中各像元的原始灰度值;为窗口内像元灰度平均值;m(i,j)为平滑窗口中各个对应像元的权重指数;t(i,j)为平滑窗口内中心像元到其邻像元的绝对距离;σ(i,j)为平滑窗口中像元值的方差;是平滑窗口的大小;l为成像视数。
此外,本实施例在采用frost滤波器对图像数据进行降噪处理之后,还可以包括:通过线性拉伸的方式将遥感图像的灰度值的动态范围按线性关系公式拉伸至指定范围,增加遥感图像的对比度。本实施例通过线性拉伸使图像中原来一些具有不同亮度值的像元转换成了相同的亮度值,原来相似的亮度值则变得不相似,从而增强了整个图像的对比度,提升图像的亮度。
值得注意的是,如图3所示,其中,图3所示坐标系示意图中,每个格代表一个坐标点,如中间像元单元,其坐标为(i,j),所述线性拉伸的变换公式包括:
其中,g’(i,j)为线性拉伸处理后像元坐标为(i,j)的灰度值,g(i,j)为降噪处理后像元坐标为(i,j)的灰度值,c0为常量,c0可以根据总体实际图像而确定。
s104,对经过图像增强处理的图像数据进行处理得到栅格形式的图像,并对图像进行矢量化,利用相连接的空间数据库选取蚝排面积相关的特征以测算出蚝排面积。
其中,本实施例s104具体可以利用专业软件对处理好的栅格形式的图像进行矢量化,在本技术领域人员理解的范围内,不作限定。
上述用于水产养殖的蚝排面积测算方法所涉及的实施例,通过对遥感图像的图像数据进行处理,可以实现自动解译和计算,减少人工成本,而且通过几何校正和纠偏能够提高计算精度。
在一个实施例中,请参阅图3,本实施例用于水产养殖的蚝排面积测算系统,包括处理器30,所述处理器30执行程序指令时,可以实现包括但不限于如下流程。其中,本实施例测算系统还可以包括存储器,其可以为网络连接的外部存储器,也可以为有线连接内设的存储器,在此不作限定。
具体而言,所述处理器30用于通过多光谱遥感的方式获取蚝排面积对应的图像数据;
所述处理器30用于对所述图像数据进行几何校正,并对发生形变的图像数据进行纠偏;
所述处理器30用于对经过校正和纠偏的图像数据进行图像增强处理,以突出与蚝排面积相关的有用信息并扩大不同地物直接的特征差别;
所述处理器30用于对经过图像增强处理的图像数据进行处理得到栅格形式的图像,并对图像进行矢量化,利用相连接的空间数据库选取蚝排面积相关的特征以测算出蚝排面积。
在具体实现的过程中,所述处理器30具体用于以矢量化地形图为底图,对多光谱遥感获取的所述图像数据的遥感图像进行对比分析,并在底图和所述遥感图像上选取具有明显、清晰定位标志物作为地面控制点;所述处理器30具体用于采用三次内插法根据输出图像上的各像元在输入图像中的位置,对所述遥感图像进行重新采样,建立新的遥感图像。
其中,本实施例三次内插值的具体过程请参阅前面方法实施例的相关描述,在此不作赘述。
所述处理器30具体用于采用frost滤波器对图像数据进行降噪处理;所述处理器30具体用于通过线性拉伸的方式将遥感图像的灰度值的动态范围按线性关系公式拉伸至指定范围,增加遥感图像的对比度。
本实施例frost滤波器的数学表达式具体包括如下:
其中,
在本实施例上述数学表达式中,g′(i,j)为平滑处理后的像元灰度值;g(i,j)为平滑窗口中各像元的原始灰度值;为窗口内像元灰度平均值;m(i,j)为平滑窗口中各个对应像元的权重指数;t(i,j)为平滑窗口内中心像元到其邻像元的绝对距离;σ(i,j)为平滑窗口中像元值的方差;是平滑窗口的大小;l为成像视数。
如前所述,所述线性拉伸的变换公式包括:
其中,g’(i,j)为线性拉伸处理后像元坐标为(i,j)的灰度值,g(i,j)为降噪处理后像元坐标为(i,j)的灰度值,c0为常量,c0可以根据总体实际图像而确定。
请继续参阅图5,图5为本申请用于水产养殖的蚝排面积测算系统的总体流程图,本实施例的蚝排面积测算系统如前所述,包括地面选点、重新采样、图像降噪、线性拉伸、栅格化和面积计算等流程,其具体可以采用前面任一实施例相关的计算处理方式,在此不作赘述。
本实施例通过对遥感图像的图像数据进行处理,可以实现自动解译和计算,减少人工成本,而且通过几何校正和纠偏能够提高计算精度。
以上所述仅为本申请的实施例,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。